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Nonlinear transfer function encodes synchronization in a neural network
from the mammalian brain

L. Menendez de la Prida1,* and J. V. Sanchez-Andres2

1Unidad de Cartografia, Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII, 1, 28040 Madrid, Spain
2Instituto de Bioingenieria, Universidad Miguel Hernandez, Campus de San Juan Apartado 18, 03550 Alicante, Spain

~Received 21 January 1999!

Synchronization is one of the mechanisms by which the brain encodes information. The observed synchro-
nization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local
features of specific areas. This means that biological neural networks should have an intrinsic mechanism able
to synchronize the neuronal activity but also to preserve the firing capability of individual cells. Here, we
investigate the input-output relationship of a biological neural network from developing mammalian brain, i.e.,
the hippocampus. We show that the probability of occurrence of synchronous output activity~which consists
in stereotyped population bursts recorded throughout the hippocampus! is encoded by a sigmoidal transfer
function of the input frequency. Under this scope, low-frequency inputs will not produce any coherent output
while high-frequency inputs will determine a synchronous pattern of output activity~population bursts!. We
analyze the effect of the network size~N! on the parameters of the transfer function~threshold and slope!. We
found that sigmoidal functions realistically simulate the synchronous output activity of hippocampal neural
networks. This outcome is particularly important in the application of results from neural network models to
neurobiology.@S1063-651X~99!03809-X#

PACS number~s!: 87.19.La, 87.10.1e, 07.05.Kf
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Neuronal integration is one of the most important mec
nisms of the brain. By its means a considerable amoun
information is continuously processed in a large number
internal operations. An intriguing question in neuronal in
gration is how large populations of neurons encode inform
tion; in particular, how synchronized patterns of neural
tivity emerge. Synchronization is the basis of stimul
detection, of spontaneous activity driving developmen
processes, and of pathological states such as epilepsy@1#.
The brain contains several nuclei that are involved in spec
functions, such as the thalamus, the olfactory bulb, or sev
cortical areas. Despite their intrinsic properties, these nu
constitute neural networks with input and output pathwa
that interact with each other during processing. It has b
suggested that the selective synchronization of these a
serves as a mechanism of binding distributed informat
into a complete representation@2#. It is, therefore, important
to understand how the properties of external stimuli de
mine the pattern and degree of synchronization within a n
work, i.e., its input-output relationship.

Historically, the sigmoidal transfer function has be
computed from the input-output relationship of individu
neurons and subsequently applied to neural network mo
@3#. A network extension of the sigmoidal dependence is
strictly correct since such a generalization assumes hom
neity and linear interactions among cells. In particular,
input-output relationship from individual neurons is obtain
by applying intracellular current pulses of different amp
tudes, a procedure that is not experimentally possible at
work level. Instead, extracellular stimulation is applied b
its strength has not a quantitative physiological interpre
tion. Recent experimental reports have shown that neu
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individually encode information according to the stimul
frequency from sigmoidal dependency to band-pass filter
@4,5#. The extent to which these particular transfer functio
can be extrapolated to the network should be thus exp
mentally investigated. Here we examined the input-out
relationship of realistic neural networks using hippocam
slices from newborn rabbits as an experimental model
synchronous firing@6#. The hippocampal circuit has bee
compared with an autoassociative neural network, show
computational properties such as content address
memory@7#. This made hippocampal slices particularly su
able to investigate the properties of biological networks@Fig.
1~a!#. In this study, we compute the input-output relationsh
of hippocampal networks by stimulating the input pathway
constant stimulus amplitude but at several frequencies@8#,
while simultaneously recording the activity from princip
cells ~cornu Ammon regions 1 and 2, CA3 and CA1 ne
rons!. The effect of network size is investigated by prepari
minislices of several lengths. We then use the transfer fu
tion to estimate the network output by simulating the CA
firing probability ~real output! using CA3 spontaneous activ
ity as the input signal. We compare the results from simu
tion with the network activity recorded in the output ar
~CA1!.

A schematic representation of the experimental system
represented in Fig. 1~b!. Hippocampal slices~500-mm thick!
were prepared following the standard procedure@9#. Simul-
taneous recordings at CA3 and CA1 were made from the
body layer while stimulating the input pathway at the mos
fibers @9#. The synchronous network response between C
and CA1 depended on the input frequencyf @Fig. 2~a!#. This
synchronous network response consisted in a popula
burst, which was tightly synchronous in proximal cells a
propagated from CA3~recording site 1! to CA1 ~recording
site 2!. Single or repetitive stimulation at 1–6 Hz did no
induce a synchronous response whatever the stimulus d
tion. Instead, synchronization was systematically elici
ic
3239 © 1999 The American Physical Society
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from 9–10 Hz~threshold!. It is important to note that this is
not a problem of frequency coupling between the netw
response and the stimulus. In hippocampal slices, the
chronous network response consists of a stereotyped po
tion burst where duration, number of spikes, and intersp
interval, remains nearly constant@4#. These stereotyped
bursts emerged synchronously between recording sites 1
2, which means that the entire hippocampal network fires
a whole ~synchronous output! depending on the particula
conditions of the input, i.e., its frequency. To quantify th
neuronal synchronization the coherence for the simultane
recordings 1 and 2 was computed. CoherenceK12 for two
signals is equal to the average cross-power spectrum nor
ized by the averaged power spectrum of the compared
nals,

K125
uCxyu2

CxxCyy
. ~1!

Coherence is the frequency domain equivalent to the cr
covariance function and is a measure of the similarity of t
signals. Its value lies between zero and one and it estim
the degree to which phases at the frequency of interest
dispersed.

We represented coherence between recording sites 1
2 against input frequency to quantify the degree of netw
synchronization as a function of the stimulus@Fig. 2~b!#. For
stimulus frequenciesf ,6 Hz the coherence was near ze
indicating low correlations between the recording sites 1
2. On the contrary, frequencies higher than 9 Hz evo
synchronization across the entire hippocampal slice, wh
was reflected in maximal values of coherence~.0.5!. At
intermediate frequency values between 6–9 Hz, large fl
tuations were detected compared with small and large va
of f. If we define the coefficient of variation as the rat

FIG. 1. ~a! Schematic diagram of the hippocampus. Input pa
ways from the cortex made synaptic contacts at the dentate g
~DG! and CA3. Stimulation of the input fibers was made at t
level where synaptic connections~mossy fibers! from DG to CA3
were also stimulated. CA3 send its axons~forward! to CA1 and
CA3 properly~backward!. Axons from CA1 provide the hippocam
pal output to the cortex. Recordings were made from CA3~record-
ing site 1! and CA1~recording site 2!. ~b! Schematic representa
tion of the hippocampal slices with the stimulation and record
electrodes~1 and 2!.
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between the coherence standard deviation and the m
~s/m! it is found that for 6, f ,9 Hz, (s/m)50.411
60.123 while for f ,6 Hz and f .10 Hz (s/m)50.062
60.007. This effect is reported in theoretical simulations
hippocampal networks@10# and reflects the fluctuating num
ber of active neurons that are recruited by the external sti
lus in the midrange.

To obtain the network transfer function we computed t
probability of synchronous firing between recording sites
and 2 for several input frequencies. Based on the previ
analysis we defined synchronization between recording s
1 and 2 when coherence values were larger than 0.5@Fig.
2~b!#. By using this criteria we computed the probability
synchronous output activity between recording sites 1 an
P( f ), for every stimulus frequencyf. Data were obtained
from n511 different hippocampal slices and could be w
fitted by a sigmoidal function@Fig. 3#,

P~ f !5
1

11ef 2 f 0 /D , ~2!

wheref 0 andD represent the threshold and the slope, resp
tively; f 058.860.1 Hz andD50.960.1 Hz. We analyzed
the effect of the network size~N! on the input-output rela-
tionship by constructing minislices from a 300–2500-mm
length. In slices, CA3 and CA1 areas are estimated to h
10 000 and 16 500 neurons, respectively@11#. Assuming that
CA3 is a 1000-mm length, this means that a 300-mm minis-

-
us

g

FIG. 2. ~a! Synchronous response of the hippocampal netw
to periodical stimulus. Repetitive stimulation induces synchron
population events~bursts! at recording sites 1 and 2 only at freque
cies higher than 9 Hz. ~b! Coherence versus the input frequenc
Highest coherence values were obtained atf .10 Hz. In the
midrange (6, f ,9 Hz) large fluctuations were observed.
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lice should contain the order of 3000 neurons. We prepa
minislices of a 300, 600, and 1000-mm length from CA3 area
and of a 2000–2500-mm length from CA1 area and recorde
simultaneously from two different sites. The results are p
sented in Fig. 4~data fromn518 minislices!. As can be seen
f 0 ~circles! increased, as network size became smaller. T
means that for small networks the input-output functi
shifted towards higher-frequency values. In terms of the
tivity this result suggests that smaller networks are more
ficult to synchronize, a result that is in accordance with
perimental and theoretical reports@12#. In fact, realistic
computational models of hippocampal slices have shown
in networks ofN525– 100 neurons synchronous bursts
no longer recorded@13#.

On the contrary, the slope of the transfer function~D! is
reduced by a factor of 15 asN is decreased@Fig. 4, triangles#.
This means that for small networks (N,5000) the transfer
function becomes more abrupt, i.e., small frequency chan
will produce larger variations of output firing probabilit
than for networks ofN.15 000. In computer simulations,N
is usually smaller than biological network sizes and step
transfer functions are frequently used. Results in Fig. 4 sh
that steplike functions have a physiological support for sm
networks, though the extension of results based in comp
tion with such a function should be carefully justified.

FIG. 3. Transfer function fromn511 hippocampal slices. Dat
can be well fitted by a sigmoidal function@Eq. ~2!# where f 058.8
60.1 Hz andD50.960.1 Hz.

FIG. 4. Dependence of threshold (f 0) and slope~D! of the trans-
fer function with the network size~N!.
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Finally, we tested the capacity of the network trans
function @Eq. ~2!# to predict the real pattern of output activ
ity. To perform this test we used the spontaneous firing
CA3 neurons as the input signal. The CA3 spontaneous
ing is the activity recorded at site 1~neuronal spiking 1! in
the absence of any stimulus. We converted the neuro
spiking 1 into a time series by computing the firing rate
Hz ~R!, i.e., the inverse of the interspike intervals@Fig. 5~a!;

FIG. 5. Simulation of the network output by the sigmoidal tran
fer function and comparison with the real output activity recorded
CA1. 1~a! CA3 spontaneous neuronal activity 1, i.e., the activ
recorded in the absence of stimulus was used as the input sign
the sigmoidal transfer function. To do this we constructed ti
series from neuronal spiking 1 by computing the firing rate in
(Rn), i.e., the inverse of the interspike interval.~b! Schematic
representation of the analysis. Five to ten minutes of spontane
neuronal spiking at CA3~recording site 1! was converted into a
time series ofn550– 60 length~firing rateR! and applied to Eq.~2!
thus obtaining the simulated output, i.e., the firing probabilityPn .
The simulated output is then compared to the real output reco
at site 2~transformed into firing rateR2!. ~c! Simulated output
obtained from Eq.~2! using firing rate 1 as the input frequencyf
5R. ~d! Real output recorded at CA1~site 2!. The neuronal spik-
ing 2, which was recorded simultaneously to neuronal spiking
can be converted into a time series of firing rate 2 or firing pro
ability as well.
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see also the scheme in Fig. 5~b!#. These time series
(R1 ,R2 ,...,Rn) had a length that is equivalent to the numb
of spikes~n! in the original signal. We have analyzed epoc
of 5–10 minutes of recording time which gave firing ra
time series of 50–60 length. Then, Eq.~2! was applied to
simulate the output activity of the hippocampal network
using firing rate 1 as the input frequency,f n5Rn , thus ob-
taining the simulated output time series, i.e., the firing pr
ability Pn @Fig. 5~c!#. The simulated outputPn was com-
pared with the real output activity~neuronal spiking 2 and
firing rate 2! recorded at site 2, i.e., from CA1 neurons@Fig.
5~d!#.

The sigmoidal transfer function characterized by the
rametersf 0 and D reported in Fig. 3 successfully simula
the output activity of hippocampal slices. To quantify t
degree of correlation between the simulated and the real
put activity, the cross-correlation function from these tw
signals was computed:

C12~t!⇔@x~ t !2^x&#@y~ t1t!2^y&#, ~3!

where ⇔ is the inverse Fourier transform,@# denotes the
Fourier transform,̂ & denotes the mean,@#’ represents the
complex conjugate, andx and y are the simulated and rea
output ~firing probability!, respectively. We investigated th
dependence between the maximum of the cross-correla
function (C12

max) and the threshold of the transfer functio
( f 0) @Fig. 6#. For thresholds ranging from 0–2 Hz and fro
9–20 Hz simulated and real network outputs were not co
lated. In the first interval (0, f 0,2 Hz), the sigmoidal func-
tion is shifted towards low-frequency values so low that
simulated output activity was maximal, i.e., all of the spo
taneous spiking fluctuations from CA3 cells~used as the in-

FIG. 6. Correlation between the simulated and the real ou
activity depending on the synchronization thresholdf 0 . The maxi-
mum of the cross-correlation function was computed for each va
of f 0 . Results are presented in normalized form.
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put signals! were suprathreshold thus determining an out
response. Forf 0 between 9–20 Hz the sigmoidal function
shifted towards high-frequency values and, therefore,
output pattern is almost silent, i.e., the majority of sponta
ous spiking fluctuations are subthresholds. Cross correla
was maximum for 3, f 0,8 Hz indicating a strong correla
tion between the simulated and the real network behavio

In summary, all these results indicate that transfer fu
tion ~2! realistically simulate the input-output properties
hippocampal neural networks and can be used for comp
tional purposes in an adaptive tuning threshold from 3–8
Interestingly, these frequencies are in the range of th
rhythm, i.e., 4–8 Hz@14#, which has been found to be opt
mal for the induction of long-term potentiation@15#. A num-
ber of theoretical studies have been carried out to investig
the storage capacity of the neural networks with a sigmo
input-output relationship@16#. This connection between ex
perimental models of memory and their theoretical coun
parts deserves more attention, especially on the view
information storage is coded in patterns of activity at 5–
Hz and 40 Hz@17#.

Another important result from this work is that in biolog
cal neural networks synchronization~in the form of popula-
tion bursts! is encoded by a nonlinear function of the inp
frequency. On this basis a network filtering capability can
proposed, which would determine the existence of t
modes of signaling@18#. Input frequencies below threshol
~,8 Hz! will not produce any coherent output, having ne
work activity largely variable. This intrinsic variability is
found to be important in coding the local features of spec
areas@19#. In fact, it has been apparent that the irregularity
a neuronal firing pattern enhances the detection of w
stimulus via stochastic resonance@20#. On the contrary, input
frequencies higher than threshold will determine a synch
nized pattern of output activity within the network~.8 Hz!.
Large-scale oscillations in this range have been reporte
the visual cortex@21#, olfactory system@22#, thalamus@23#,
and hippocampus@24#. In these systems, 40-Hz oscillation
have been suggested to serve as a mechanism of bindin
neuronal activity from distributed networks@2,25#. This
means that biological networks should have an inter
mechanism able to both produce synchronized pattern
neuronal activity and preserve the individual firing capac
of the neurons. The sigmoidal network function of input fr
quency provides a solution to this problem by playing t
role of a functional switch between these two operatio
modes.

This work is supported by Grant No. 96/2012 from th
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grant from Generalitat Valenciana. We thank G. Ortega a
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